

Revision Date : <u>2023 / 07 / 03</u>

APPROVAL SHEET

Product Name : Metal Strip High Power Current Sensor

Part No. : RHL – Wide Terminal

Description : Size 1225

炬鹿科技有限公司

RIDEE TECH COMPANY LIMITED

For more contact information, please refer to our website: www.rideetech.com

Metal Strip High Power Current Sensor – RHL-Wide Terminal

Application

- -Industrial Product Power Management
- -Power Supply
- -SWPS (DC-DC Converter, Charger, Adaptor

Features

-These specifications cover 1225 sized high power low resistance current sensing metal resistors.

Part Number Explanation

RHL	1225	J		т		05	W
Туре	Size	Tolerance	Packa	aging	Resis	tance	Functional
High Power Low Ohmic Resistor	EIA 1225	F: ±1% H: ±3% J: ±5%	T:7"Taped	d & Reeled	M50: 0. R005: (1M5: 0 R010: (.0005Ω 0.005Ω .0015Ω 0.01Ω	W : Wide Terminal

NOTE: Parts shall not be marked. Coding is for ordering purpose

CONFIGURATION

DIMENSIONS

	L (mm)	W (mm)	D (mm)	T (mm)	Alloy	
values	±0.25	±0.2	±0.25	±0.2	Alloy	
M10~M25	6.35	3.0	1.0	1.0	Manganin-C2	
M30~M40			0.5	1.0	Manganin-C2	
M50~R001			0.5	0.6	Manganin	
1M5			1.0	0.6	Kanthal	
R002			0.8	0.6	Kanthal	
2M5~R003			0.5	0.6	Kanthal	

*Dimensions are for reference only.

ELECTRICAL DATA

Resistance	Power Rating at 80°C	Max. Dielectric Voltage	Operating Temp. (°C)
$0.1 m\Omega \sim 3 m\Omega$	4W	200V	-55°C ~ 170°C

POWER TEMPERATURE DERATING CURVE

Power ratings are based on continuous full load operation at rated ambient temperature of 80°C. For resistors operated at ambient temperature in excess of 80°C, the maximum load shall be derated in accordance with the following curve.

RATED VOLTAGE

The direct or alternating voltage for the rated power can be calculated from the following formula but must not exceed the maximum voltage.

Where,

TEMPERATURE COEFFICIENT OF RESISTANCE (TCR)

TCR (ppm/°C)=
$$\left[\frac{(R_2 - R_1)}{R_1(T_2 - T_1)}\right] \times 10^6$$

R₁=resistance at room temperature R₂=resistance at –55°C or 125°C T₁=room temperature T₂=-55°C or 125°C

Range (mΩ)	M10	M30	M50	R001	R003
Max. Working Current (A)	200	116	89	63	36
Max. Overload Current (A)	447	258	200	141	81
TCR (ppm) (20°C to 60°C)	±500	±350	±300	±250	±100
Power Rating (W)			4		
Tolerance (%)			±1,3,5		

PERFORMANCE DATA

AEC-Q200				40	
Rev.D	Test	Reference	Conditions	ΔR	
Table 7				+0.5mΩ	
	High Temperature	MIL-STD-202 Method			
Item 3	Storage	108	1000hrs. I=125C. Unpowered. Measurement at 24±4hrs after test conclusion		
	Tana and an Oaling		1000 cycles (-55C to +125C). Measurement at 24±4hrs after test conclusion.		
Item 4	lemperature Cycling	JESD22 Method JA-104	30 m max., dwell time at each temp extreme, transition time 1m max.		
		MIL-STD-202 Method	1000hrs. 85C/85%RH. 10% of operating power. Measurement at 24±4hrs after	404	
		103	test conclusion.	1%	
		MIL-STD-202 Method	Condition D (1000hrs) Steady State TA=125C at rated power. Measurement at		
Item 8	Operating Life	108	24±4hrs after test conclusion.		
		MIL-STD-883 Method	Electrical test not required. Inspect device construction, marking and		
Item 9	External Visual	2009	workmanship		
			Verify physical dimensions to the applicable device detail specification.	User	
Item 10	Physical Dimension	JESD22 Method JB-100	Electrical test not required	Spec.	
	Resistance to	MIL-STD-202 Method	Aqueous wash chemical-OKEM Clean or equivalent		
Item 12	Solvents	215	Do not use banned solvents.		
		MIL-STD-202 Method			
Item 13	Mechanical Shock	213	Figure 1 of Method 213. Condition C		
			5g's for 20min., 12 cycles each of 3 orientations. Use 8"*5" PCB .031" thick 7	1%	
Item 14	Vibration	secure points on one long side and secure points at corners of c	secure points on one long side and secure points at corners of opposite sides.		
		204	Parts mounted within 2"from any secure point. Test from 10-2000Hz		
Itom 15	Resistance to	MIL-STD-202 Method	Condition P. No. are best of complex. Single Ways Colder Presedure 2 for CMD.		
item 15	Soldering heat	210	Condition B. No pre-heat of samples. Single wave solder-procedure 2 for Swid		
			Electrical test not required. Magnification 50 X. SMD Conditions:		
Itom 19	Soldorability		a) Method B, 4hrs @155C dry heat @235C	>95%	
item 18	Solderability	3-310-002	b) Method B @215C category 3.	coverage	
			c) Method D category 3@260C.		
	Electrical		Parametrically test per lot and sample size requirements, summary to show	llcor	
ltem 19	Characterization	User Spec.	min, max, mean and standard deviation at room as well as min and max	Spoc	
	Characterization		operating temperatures.	spec.	
Item 21	Board Elex	AFC 0200-005	Annendix 2 Note: 2mm (Min)		
				1%	
Item 22	Terminal strength	AEC 0200-006	Appendix 1 Note: Force of 1.8kg for 60 seconds	1/0	
	(SMD)				

MEASUREMENTS

4-WIRE PRECISION MEASUREMENT

Equipment : ADEX AX-1152D DC Low Ohm Meter

4-WIRE PAD LAYOUT

Note: No circuits between pads to avoid short circuit

Unit: mm

TYPE	a (mm)	b (mm)	c (mm)	l (mm)
0.1mΩ~0.25mΩ	3.0	1.4	0.6	0.8
0.3mΩ~0.4mΩ	3.0	0.9	1.6	0.8
$0.5 m\Omega \sim 1 m\Omega$	3.0	0.9	1.6	0.8
$1.5 m\Omega$	3.0	1.4	0.6	0.8
2mΩ	3.0	1.2	1.0	0.8
$2.5 m\Omega \sim 3 m\Omega$	3.0	0.9	1.6	0.8

*Dimensions are for reference only.

2-WIRE PAD LAYOUT

Unit: mm

TYPE	a (mm)	b (mm)	c (mm)
0.1mΩ~0.25mΩ	6.8	1.4	0.6
$0.3 m\Omega \sim 0.4 m\Omega$	6.8	0.9	1.6
0.5mΩ~1mΩ	6.8	0.9	1.6
1.5mΩ	6.8	1.4	0.6
2mΩ	6.8	1.2	1.0
2.5m Ω~3mΩ	6.8	0.9	1.6

*Dimensions are for reference only.

PACKAGING

EMBOSS PLASTIC TAPE SPECIFICATIONS

Unit : mm

Symbol	Ao	Во	Ko	Po	P1	P2	Т
Spec.	3.4±0.1	6.75±0.1	0.80±0.1*	4.0±0.1	4.0±0.1	2.0±0.05	0.25±0.1
Symbol	Е	F	Do	D1	W	10Po	
Spec.	1.75±0.1	5.5±0.05	1.55±0.05	1.5 (min)	12.0±0.3	40.0±0.2	

Note:

- 1. * For $0.1m\Omega \sim 0.4m\Omega$, Ko=1.4mm±0.1
- 2. The cumulative tolerance of 10 sprocket hole pitch is ± 0.12 mm.
- 3. Carrier camber shall be not more than 1mm per 100mm through a length of 250mm.
- 4. Ao & Bo measured 0.3mm from the bottom of the packet to top surface of carrier
- 5. Ko measured at a point on the inside bottom of the packet to the top surface of the carrier.
- 6. Pocket position relative to sprocket hole is measured as the true position of the pocket and not the pocket hole
- 7. Material: Conductive Polystyrene. Color: Transparent

REEL SPECIFICATIONS

PEEL FORCE

The cover tape shall have a total peel strength of from 0.1N to 1.3N (10g to 130g calibrated scale reading) for 8mm carrier tapes and the direction of pull shall be opposite the direction of carrier tape travel such that the cover tape makes an angle of between 165 and 180 degrees with the top of the carrier tape. The cover tape, shall be pulled with a velocity of 300mm±10 mm/min, relative to the carrier tape, during peeling, which results in the cover/carrier tape seal being separated at a rate of 150mm/min.

STORAGE NOTES

Ideal storage conditions are from 10 to 30°C, avoiding temperature changes greater than 10°C in a 24 hour period, and 30 to 60% RH. Chemical fumes, sulphur-bearing gases and particulate air pollution should not be present. Original packaging should remain intact until first use. It is recommended that solderability and resistance be checked after a year in storage.